133 research outputs found

    On-line Electrical Impedance Tomography for Industrial Batch Processing

    Get PDF

    Agricultural Robotics:The Future of Robotic Agriculture

    Get PDF

    White paper - Agricultural Robotics: The Future of Robotic Agriculture

    Get PDF
    Agri-Food is the largest manufacturing sector in the UK. It supports a food chain that generates over £108bn p.a., with 3.9m employees in a truly international industry and exports £20bn of UK manufactured goods. However, the global food chain is under pressure from population growth, climate change, political pressures affecting migration, population drift from rural to urban regions and the demographics of an aging global population. These challenges are recognised in the UK Industrial Strategy white paper and backed by significant investment via a wave 2 Industrial Challenge Fund Investment (“Transforming Food Production: from Farm to Fork”). RAS and associated digital technologies are now seen as enablers of this critical food chain transformation. To meet these challenges, here we review the state of the art of the application of RAS in Agri-Food production and explore research and innovation needs to ensure novel advanced robotic and autonomous reach their full potential and deliver necessary impacts. The opportunities for RAS range from; the development of field robots that can assist workers by carrying weights and conduct agricultural operations such as crop and animal sensing, weeding and drilling; integration of autonomous system technologies into existing farm operational equipment such as tractors; robotic systems to harvest crops and conduct complex dextrous operations; the use of collaborative and “human in the loop” robotic applications to augment worker productivity and advanced robotic applications, including the use of soft robotics, to drive productivity beyond the farm gate into the factory and retail environment. RAS technology has the potential to transform food production and the UK has the potential to establish global leadership within the domain. However, there are particular barriers to overcome to secure this vision: 1.The UK RAS community with an interest in Agri-Food is small and highly dispersed. There is an urgent need to defragment and then expand the community.2.The UK RAS community has no specific training paths or Centres for Doctoral Training to provide trained human resource capacity within Agri-Food.3.While there has been substantial government investment in translational activities at high Technology Readiness Levels (TRLs), there is insufficient ongoing basic research in Agri-Food RAS at low TRLs to underpin onward innovation delivery for industry.4.There is a concern that RAS for Agri-Food is not realising its full potential, as the projects being commissioned currently are too few and too small-scale. RAS challenges often involve the complex integration of multiple discrete technologies (e.g. navigation, safe operation, multimodal sensing, automated perception, grasping and manipulation, perception). There is a need to further develop these discrete technologies but also to deliver large-scale industrial applications that resolve integration and interoperability issues. The UK community needs to undertake a few well-chosen large-scale and collaborative “moon shot” projects.5.The successful delivery of RAS projects within Agri-Food requires close collaboration between the RAS community and with academic and industry practitioners. For example, the breeding of crops with novel phenotypes, such as fruits which are easy to see and pick by robots, may simplify and accelerate the application of RAS technologies. Therefore, there is an urgent need to seek new ways to create RAS and Agri-Food domain networks that can work collaboratively to address key challenges. This is especially important for Agri-Food since success in the sector requires highly complex cross-disciplinary activity. Furthermore, within UKRI most of the Research Councils (EPSRC, BBSRC, NERC, STFC, ESRC and MRC) and Innovate UK directly fund work in Agri-Food, but as yet there is no coordinated and integrated Agri-Food research policy per se. Our vision is a new generation of smart, flexible, robust, compliant, interconnected robotic systems working seamlessly alongside their human co-workers in farms and food factories. Teams of multi-modal, interoperable robotic systems will self-organise and coordinate their activities with the “human in the loop”. Electric farm and factory robots with interchangeable tools, including low-tillage solutions, novel soft robotic grasping technologies and sensors, will support the sustainable intensification of agriculture, drive manufacturing productivity and underpin future food security. To deliver this vision the research and innovation needs include the development of robust robotic platforms, suited to agricultural environments, and improved capabilities for sensing and perception, planning and coordination, manipulation and grasping, learning and adaptation, interoperability between robots and existing machinery, and human-robot collaboration, including the key issues of safety and user acceptance. Technology adoption is likely to occur in measured steps. Most farmers and food producers will need technologies that can be introduced gradually, alongside and within their existing production systems. Thus, for the foreseeable future, humans and robots will frequently operate collaboratively to perform tasks, and that collaboration must be safe. There will be a transition period in which humans and robots work together as first simple and then more complex parts of work are conducted by robots; driving productivity and enabling human jobs to move up the value chain

    Photometric stereo for three-dimensional leaf venation extraction

    Get PDF
    © 2018 Elsevier B.V. Leaf venation extraction studies have been strongly discouraged by considerable challenges posed by venation architectures that are complex, diverse and subtle. Additionally, unpredictable local leaf curvatures, undesirable ambient illuminations, and abnormal conditions of leaves may coexist with other complications. While leaf venation extraction has high potential for assisting with plant phenotyping, speciation and modelling, its investigations to date have been confined to colour image acquisition and processing which are commonly confounded by the aforementioned biotic and abiotic variations. To bridge the gaps in this area, we have designed a 3D imaging system for leaf venation extraction, which can overcome dark or bright ambient illumination and can allow for 3D data reconstruction in high resolution. We further propose a novel leaf venation extraction algorithm that can obtain illumination-independent surface normal features by performing Photometric Stereo reconstruction as well as local shape measures by fusing the decoupled shape index and curvedness features. In addition, this algorithm can determine venation polarity – whether veins are raised above or recessed into a leaf. Tests on both sides of different leaf species with varied venation architectures show that the proposed method is accurate in extracting the primary, secondary and even tertiary veins. It also proves to be robust against leaf diseases which can cause dramatic changes in colour. The effectiveness of this algorithm in determining venation polarity is verified by it correctly recognising raised or recessed veins in nine different experiments

    Multivariate data analysis for embedded sensor networks within the perishable goods supply chain

    Get PDF
    This study was aimed at exploring data analysis techniques for generating accurate estimates of the loss in quality of fresh fruits, vegetables and cut flowers in chilled supply chains based on data from advanced sensors. It was motivated by the recent interest in the application of advanced sensors, by emerging concepts in quality controlled logistics, and by the desire to minimise quality losses during transport and storage of the produce. Cut roses were used in this work although the findings will also be applicable to other produce. The literature has reported that whilst temperature was considered to be the most critical post-harvest factor, others such as growing conditions could also be important in the senescence of cut roses. Kinetic modelling was the most commonly used modelling approach for shelf life predictions of foods and perishable produce, but not for estimating vase life (VL) of cut flowers, and so this was explored in this work along with multiple linear regression (MLR) and partial least squares (PLS). As the senescence of cut roses is not fully understood, kinetic modelling could not be implemented directly. Consequently, a novel technique, called Kinetic Linear System (KLS), was developed based on kinetic modelling principles. Simulation studies of shelf life predictions for tomatoes, mushrooms, seasoned soybean sprouts, cooked shrimps and other seafood products showed that the KLS models could effectively replace the kinetic ones. With respect to VL predictions KLS, PLS and MLR were investigated for data analysis from an in-house experiment with cut roses from Cookes Rose Farm (Jersey). The analysis concluded that when the initial and final VLs were available for model calibration, effective estimates of the post-harvest loss in VL of cut roses could be obtained using the post-harvest temperature. Otherwise, when the initial VLs were not available, such effective estimates could not be obtained. Moreover, pre-harvest conditions were shown to correlate with the VL loss but the correlation was too weak to produce or improve an effective estimate of the loss. The results showed that KLS performance was the best while PLS one could be acceptable; but MLR performance was not adequate. In another experiment, boxes of cut roses were transported from a Kenyan farm to a UK distribution centre. Using KLS and PLS techniques, the analysis showed that the growing temperature could be used to obtain effective estimates of the VLs at the farm, at the distribution centre and also the in-transit loss. Further, using post-harvest temperature would lead to a smaller error for the VL at the distribution centre and the VL loss. Nevertheless, the estimates of the VL loss may not be useful practically due to the excessive relative prediction error. Overall, although PLS had a slightly smaller prediction error, KLS worked effectively in many cases where PLS failed, it could handle constraints while PLS could not.In conclusion, KLS and PLS can be used to generate effective estimates of the post-harvest VL loss of cut roses based on post-harvest temperature stresses recorded by advanced sensors. However, the estimates may not be useful practically due to significant relative errors. Alternatively, pre-harvest temperature could be used although it may lead to slightly higher errors. Although PLS had slightly smaller errors KLS was more robust and flexible. Further work is recommended in the objective evaluations of product quality, alternative non-linear techniques and dynamic decision support system.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Recent Advances in Enzymatic and Non-Enzymatic Electrochemical Glucose Sensing

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-07-06, pub-electronic 2021-07-08Publication status: PublishedFunder: Engineering and Physical Sciences Research Council; Grant(s): EP/R513131/1The detection of glucose is crucial in the management of diabetes and other medical conditions but also crucial in a wide range of industries such as food and beverages. The development of glucose sensors in the past century has allowed diabetic patients to effectively manage their disease and has saved lives. First-generation glucose sensors have considerable limitations in sensitivity and selectivity which has spurred the development of more advanced approaches for both the medical and industrial sectors. The wide range of application areas has resulted in a range of materials and fabrication techniques to produce novel glucose sensors that have higher sensitivity and selectivity, lower cost, and are simpler to use. A major focus has been on the development of enzymatic electrochemical sensors, typically using glucose oxidase. However, non-enzymatic approaches using direct electrochemistry of glucose on noble metals are now a viable approach in glucose biosensor design. This review discusses the mechanisms of electrochemical glucose sensing with a focus on the different generations of enzymatic-based sensors, their recent advances, and provides an overview of the next generation of non-enzymatic sensors. Advancements in manufacturing techniques and materials are key in propelling the field of glucose sensing, however, significant limitations remain which are highlighted in this review and requires addressing to obtain a more stable, sensitive, selective, cost efficient, and real-time glucose sensor
    • …
    corecore